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Homogeneous Anisotropic Cosmological Models with 
Variable Gravitational and Cosmological "Constants" 

T. Singh ~ and Anil  K. Agrawal ~ 
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The Einstein field equations with perfect fluid source and variable A and G for 
Bianchi-type universes are studied under the assumption of a power-law time 
variation of the expansion factor, achieved via a suitable power-law assumption 
for the Hubble parameter suggested by M. S. Berman. All the models have a 
power-law variation of pressure and density and are singular at the epoch t ~ 0. 
The variation of G(t) as 1/t and A(t) as 1/t 2 is consistent with these models. 

1. INTRODUCTION 

The "cosmological constant problem" can be expressed as the dis- 
crepancy between the negligible value A has for the present universe 
(Weinberg, 1972) and the values 1050 times larger expected by the Glashow- 
Salam-Weinberg model (Abers and Lee, 1973) or by the grand unified 
theory (GUT) (Langacker, 1981), where it should be 101~ times larger. 
Recently Wahba (1989) studied the cosmological function A(t) in detail. 
Chen and Wu (1990) suggested that Aoc 1 / R  2, where R ( t )  is the scale factor 
in the Robertson-Walker model. Abdel-Rahman (1990) considered a model 
with the same kind of variation. Berman et al. (1989), Berman and Sore 
(1990a, b), and Bertolami (1986a, b) stressed that the relation Aoc t - 2  plays 
an important role in cosmology. It has been shown by Berman (1983) and 
Berman and Gomide (1988) that all the phases of  the universe, i.e., radiation, 
inflation, and pressure-free, may be considered as particular cases of the 
deceleration parameter q = const type, where 

q = - R R / R  2 (1.t) 
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where dots stand for time derivatives. We extend this definition to the 
Bianchi-type cosmological models. We consider Einstein's field equations 
with time-varying A and G and take the energy-momentum tensor of a 
perfect fluid. We assume that the conservation law for matter holds. 

2. FIELD EQUATIONS 

Einstein's field equations with variable cosmological and gravitational 
"constants" A and G are given by 

R ~  - 1 6 ~ R  = 8 7rG(t) T ~  + A ( t ) 6 ~  (2.1) 

where R"~ is the Ricci tensor; R = g~'~R,~ is the Ricci scalar; and T~'~ is 
the matter energy-momentum tensor. 

From the divergence of (2.1), we get 

8r + 8r + A.6"~ = 0 (2.2) 

The energy-momentum tensor is 

T.,, = (p + p )u.u~ - pg.,, (2.3) 

The four-velocity vector u" is 

U" = [0, 0, 0, (g44)-,/2] (2.4) 

3. BIANCHI  TYPE I MODEL 

The Bianchi type I metric is 

dS 2 = dt 2_ g2(t)  dx 2_ R2(t) @2_  g~(t)  dz 2 (3.1) 

For the metric (3.1), the field equations (2.1) and (2.2) reduce to 

/~2 /~3 G G  - - + - - + - - = 8 ~ r G p - A  (3.2) 
R2 R3 R2R3 

R--3~ + R--23 + [tlR3 = 8r - A (3.3) 
RI R3 R1R3 

- - + - - + - -  = 8r  (3.4) 
RI R2 RIR2 

[~3R1 /~'/~2 +/~2/~3-~ STrGp-A (3.51 
R1R2 ReR3 R3R1 

8=Gp+8=G[#g+(p+p)t-~l+'-~2+-~3)]+]k=O (3.6) 
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If we suppose the energy conservation law T" = 0  v ; /x  

(3.6) reduces to 
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to hold, then 

We assume the solution of 

v ( t )  = 

R,( t )  = 

R2(t) = 

R3(t) = 

A ( , )  = 

equations (3.2)-(3.7) in the form 

(mDt) l/m 

(mlDl t )  l/m, 

(m2D2t) 1/% 

(m3D3t) I/m3 

Ao t-2, m, m l ,  m2, m 3 ~ 0 

where m, m~, m2, m3, D, D1, D2, D3,  and Ao are arbitrary constants. From 
(3.8) and (3.9), we get 

1 _ 1 ( - - 1 + - - 1  +__1~ (3.10) 
m 3 \m~ m2 m3/ 

Using (3.9) in (3.2) and (3.5), we get the pressure and density respectively, 

1( 1 1 1 1 1 )  
8"n'Gp= 7 Ao+ 2 ~ 4- (3.11) 

me /712 m~ m3 m2m3 

1 (  1 1 1 ) 
8 r r G p = - ~  Ao+ + + (3.12) 

mlm2 m2m3 m3ml 

From equations (3.2)-(3.4) and (3.9), we have 

1 1 1 1 1 1 
b - - =  2 ~ - -  

m~ m2 mam3 ml ml mlm3 
1 1 1 1 1 1 

2 ~ - -  - -  2 ~ - -  
m3 m3 m2m 3 mt  ml mlm2 

From (3.7b) and (3.8), we get 

8~rpG - Ao 
t 3 

(3.13) 

(3.14) 

(3.15) 

(3.9) 

t~ + (P + P ) ~  + ~-~2 + ~--~3) = 0 (3.7a) 

= -8~rGp (3.7b) 

where the quantities with dots refer to their derivatives with respect to 
coordinate t. 

We define the 3-volume by 

V( t) = [ R1R2R3] 1/3 (3.8) 
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Equations (3.12) and (3.15) give (CJ/G) varying as 1/t. Then G, p, and p 
vary as 1/t. The model is singular at t =0, and with its evolution, the 
pressure, density, and the cosmological term decrease. 

Further, 

1(1  1 1 1 )   316a  
P + P  - ~ 2 87rGt z rn 2 m 3 m3 mlm2 

1 ( 1 2 1  1 1 1 2 1 ) p +p  -- 2Ao 81rGt2 mZ 2 + (3.16b) m 3 rn~ ??/1 m2 m 2 m  3 m3m 1 

1 ( 3  3 + 3 3 + 2 1 1 + 2 A o ) ( 3 . 1 6 c )  
p+3P=8rrGt2  rn~ m2 rn~ m3 m~m3 mlm2 mime3 

1 ( 3 3 3 3 4  1 1 ) 
p - 3 P = 8 7 r G t 2  m2 m~ ~ 4Ao (3.16d) m3 m~ mzm3 mlrn2 mxm3 

The reality conditions p -> 0, p --- 0, and p - 3p -> 0 impose further restrictions 
on the model besides (3.10), (3.13), and (3.14). 

4. BIANCHI TYPE II M O D E L  

The Bianchi type II metric is 

dS 2 = dt 2 _ S 2 dx 2 _ R 2 dy 2 

- (R~y2+�88 4) dz 2 -  S2y 2 dx dz, (4.1) 

where S = S( t )  and R = R( t ) .  
The field equations (2.1) and (2.2) for the metric (4.1) lead to 

2 - -  + - -  R--- ~ = 8 ~rGp - A (4.2) 
R 4 

/~ ;~ /~S 1 S  2 
- - + - - +  + -  ~-~ = 8~'Gp - A (4.3) 
R S RS 4 

2 -R--~+ --~ R----~ = - 8 7 r G p - A  (4.4) 

87rpG+ 8~rG [tJ + (p + p ) ( ~ +  2 ~ )  ] + A=O (4.5) 

If we assume that the energy conservation law for matter holds, then 
(4.5) reduces to 

/ 3 + ( p + p ) ( ~ + 2  R )  =0  (4.6a) 

A_ = - 8  ~-p(~ (4.6b) 
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We define 

v ( t )  = ( sR2)  ~/3 (4.7) 

We assume the solution of equations (4.2)-(4.6) in the form 

V ( t ) = ( m D t )  ~/m 

S ( t ) = ( m l D l t )  1/'~t 

R( t )  = (m2Dzt) lira2 (4.8) 

A(t) = Ao t-2, m, ml, m2~0  

where m, m~, m2, D, D~, Dz, Ao are arbitrary constants. From (4.7) and 
(4.8) we get 

3m~m2 
m = - - -  (4.9) 

2m~ + m2 

Using (4.8) in (4.2) and (4.4), we get p and p, respectively: 

8~.Gp=~(Ao_+ 3 2 )  3(maDl t )  2/"1 
2 m 4 (mzD2t) 4/m2 (4.10) m2 

1 (  2 + 1 )  l ( m l D ~ t )  2/ml 
8r  Ao+ Jr (4.11) 

mtm2 ~ 4 (m2Dzt) 4/m2 

From (4.2), (4.3), and (4.8), we have 

1 

t 2 m 2 ma m~ m 

(ml D1 t) 2/r~ 
-- (m2D~t)4/m 2 (4.12) 

This is satisfied, leading to a relation between the constants, if 

2 1 
- -  = 1 + - -  ( 4 . 1 3 )  
//'/2 ml 

From (4.6b) and (4.8), we have 

81rpO - Ao t3 (4.14) 

Equations (4.11) and (4.14) give G/G.  When (4.13) is satisfied, G / G  varies 
as 1/t. Then G, p, and p vary as 1/t. The model is singular at t =0. 

Further we can easily obtain 

P + P : ~  -~ m 2 m2 m 2 (m~O-------2t)4/'------~J (4.15a) 
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[ 2 (  1 2 1 )  (m,Dl t )2 / "  1 
1 --fi re,m2 m~ Zn2 (m2D2t)4/m2_] P - P  = 8 - ~  Ao+ -~ -~ (4.15b) 

0 + 3 P = 8 -  ~ ~ Ao+ -~ (4.15c) rn~m2 rn~ ~ - ~ j  

I [2(_~.~2 1 ~_2Ao)_ 5(m,D,t)2/m' l (4.15d) 
p--3p = ~  -fi m l m 2 -  2 (m2D2t)a/'~------------~2J 

The reality conditions p -> 0, p -> 0, and p - 3p -> 0 impose further restrictions 
on the model  besides (4.9), (4.12), and (4.13). 

5. BIANCHI TYPE III M O D E L  

The Bianchi type III  metric is 

dS 2 = dt 2 -  g2( t ) dr ~ - R ~( t )[ d02 + sinh 2 0 d~b 2] (5.1) 

For the metric (5.1), the field equations (2.1) and (2.2) reduce to 

R2 \ R 2 / - R ~  =87rGp-A  (5.2) 

/~' +/~2 +/~a/~2 = 8~rGp - A (5.3) 
Rl R2 RIR2 

/~lR2 [g2'~ 2 1 
2R---~+~R-~).___ R ~ -  8r  (5.4) 

[ " . 
(5.5) 

\ R1 Rz/.] 

If we assume that the energy conservation law holds, then (5.5) reduces to 

(., �9 

h = - 8  ~-Op (5.6b) 

We define 

V( t) = ( RIR2~) 1/3 (5.7) 

We assume the solution of equations (5.2)-(5.6) in the form 

V(t) = (mDt)i/ , ,  

Rl( t )  = (mlD~t) 1/ml 
R2( t ) = ( m2D2 t) '/'2 (5.8) 

A(t)  = Ao t-z,  m, ma, m2 # 0 

where m, rnL, m2, D, Da, D2, and Ao are arbitrary constants. 
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From (5.7) and (5.8), we get 

3mlm2 
m - - -  (5.9) 

2ma + m2 

Using (5.8) in (5.2) and (5.4), we get p and p, respectively: 

8rrGp-=-~ Ao-~ 2 m2 (m2D2t) 2/m2 

\ m2 mlm2/ (m2D2t) 2/m2 (5.11) 

From (5.2), (5.3), and (5.8), we get 

2 t (5.12) t2 2 m2 mt ma ml-m2 (meD2t) 2/m2 

Equation (5.12) is satisfied and leads to a relation between the constants 
when 

m2 = 1 (5.13) 

From (5.6b) and (5.8), we have 

4frOG - Ao t3 (5.14) 

Equations (5.11) and (5.14) give G / G  when (5.13) is satisfied, 

- - o c -  (5.15) 
G t 

Therefore G, p, and P vary as l i t  and are singular at t=0 .  Further 

1 ( 1  1 1~2) (5.16a) 
P+P=8~rGt  2 -m~ m2 m 

1 [ ~ ( 1  2 1 ) 1 ] 
2 Ao + (5.16b) P - P = ~ G  2 mz mlm2 (m2D2t) 2/m2 

[ ( ) ' ]  1 1 4 3 1 "t-Ao (5.16c) 
p + 3 P = 4 -  ~ ~5 ~--2 2 m2 mlm2 (m2D2t) 2/% 

1 [ ~ ( 3  5 1 _2Ao)_ ~ 2 ] 
p - 3 p =  4rrG rn2 m 2 mira2 (m21~t) 2/'~z (5.16d) 

The reality conditions p -> 0, p -> 0, and p - 3p - 0 impose further restrictions 
on the model besides (5.9), (5.12), and (5.13). 
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6. KANTOWSKI-SACHS M O D E L  

The Kantowski-Sachs metric is 

dS 2 = dt 2 - R~(t)  dr 2 - R~( t)(dO 2 + sin 2 0 &b 2) (6�9 1) 

For the metric (6.1), the field equations (2.1)-(2.2) reduce to 

+--A-7 = 87rGp - A (6.2) 
R2 R2 

/~lq - ~2"~- ~1~2 = 8~-Gp- A (6.3) 
R1 R2 R1R2 

2 R , R ~ ,  { R ~ 2  1 
R---~2 • ~-~zJ +~22 = - 8 7 r G p - A  (6.4) 

[ " 
87rpG + 87rG ~6 + (O +p)(R--2+2 R2~ ] + a = 0 (6.5) 

\R1 Rz,JJ 

If  we suppose that the energy conservation law holds for matter, then 
(6.5) reduces to 

A = - 8  crGp (6.6b) 

We define 

V( t) = ( R ,R~)  '/3 (6.7) 

We assume the solution of equations (6.2)-(6.6) in the form 

V(t )  = (mOt )  1/r~ 

R l ( t )  = ( m l D l t )  1/'~' 

R2( t ) = ( m2D2t ) 1/,, 2 (6.8) 

A(t) = Aot -2, m, rnl, m2 ~ 0 

where m, m~, m2, D, D1, D2, and Ao are constants�9 
From (6.7) and (6.8), we get 

3m~m2 
m = (6.9) 

2ml + m2 

Using (6.8) in (6.2) and (6.4), we get p and p, respectively, 

87rGp = Aoq m~ ms -~ (m2D2t) 2/'2 

8 r r G p = - ~ 5 ( A o +  lg_2+ 2- -~ ' ) - (m2D2t)  -=/m2 (6.11) 
\ m 2 m~m2/ 
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From (6.2), (6.3), and (6.8), we get 

__1 
t 2 m I m ~ m 2  

22 ~--~2)=(m2D2t) -2/'~2 
tn 2 

(6.12) 

This is satisfied and reduces to a relation between the constants when 

m 2 = 1 (6.13) 

From (6.6b) and (6.8), we have 

4~'pG Ao 
f3 (6.14) 

Equations (6.11) and (6.14) give G/G.  When Goc 1/t, then from (6.10) and 
(6.11) the pressure and density vary as 1/t. The model is singular at t = 0. 

We can easily obtain 

p + p  = 
8 7rGt 2 rn2 m 

P - P = ~ G  -fl mlm2 m~ 

1 [ 1 ( 4  3 1 
p + 3 P = 4 - - ~  ~ n~ m: rnlrn: 

p - 3 P = ~ G  -~ rn2 mlm2 

(6.15a) 

Ao)- ( rnaDzt )  -2/'~2] (6.15b) 

~-Ao) + (m2D2t) -2/m2] (6.15c) 

2Ao)-2(rn2Dzt)  - 2/m2 ] (6.15d) 

The reality conditions p -> 0, p >- 0, and p - 3p -> 0 impose further restric- 
tions on the model besides (6.9), (6.12), and (6.13). 

7. BIANCHI TYPE V M O D E L  

The Bianchi type V metric is 

dS 2 = dt 2 -  R2(t) dx 2 -  e 2aX[R22(t) dy2+ R~(t) dz 2] (7.1) 

where a = const. 
The field equations (2.1)-(2.2) for the metric (7.1) reduce to 

k2+/~3_~/~2/~3 a 2 
- -  - -  81rGp - A  (7.2) 
R 2 R 3 R 2 R  3 R ~  

R1+1~3_+ RIR3 a 2 
87rGp - A  (7.3) 

R1 R3 R1R3 R 2 
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g l  + 1~2 +/~1/~2 a 2 
- -  - -  87rGp - A  (7.4) 
R1 R2 R1R2 R~ 

/~/~2+/~2/~3+/~3/~ 3a2 - 8 7 r G p - A  (7.5) 
R~R2 R2R 3 RaR1 R~ 

/~2t_/~3 2/~1=0 (7.6) 
R2 R3 R1 

87rpG+8~rG[lk+(p [ / ~  /~2 R3\7 (7.7) 

If we suppose that the energy conservation law holds, then equation 
(7.7) reduces to 

We define 

= o  
\R1 R2 R3,] 

A = - 8"rrGp 

(7.8a) 

(7.8b) 

V( t) = ( R1R2R3) '/3 (7.9) 

We assume the solution of equations (7.2)-(7.8) in the form 

V(t)  = (mDt) 1/m 

R l ( t ) = ( m l D l t )  1/ml 

R2(t ) = (m2D2t) 1/r% (7.10) 

Ra(t) = (m3O3t) 1/m3 

A(t) = Ao t-2, m, ml ,  m2, m 37 ~ 0 

where m, ml, m2, m3, D, D1,  0 2 ,  D3,  and Ao are arbitrary constants. 
From (7.6), (7.9), and (7.10), we get 

1 1 ( _ _  _ _  __~  (7.11) _ 1 + 1 + 1  
m 3 \ m l  m2 m3/ 

1 1 3 
+ - (7.12) 

/113 m 2 ml 
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Using (7.10) in (7.2) and (7.5), we get the pressure and density, 

1 (  1 1 1 1 1 ) 
87rGp=-~ Ao4m2 m2~-m---~3+m--~3+rn2m3 

- a2(m~ D~ t)-2/" (7.13) 

8 7rGp = - Ao + + + 
miD12 /T/2m 3 m3~/1 

+ 3a2(m1D1 t)-2/m' (7.14) 

From (7.2), (7.3), (7.4), and (7.10), we have 

1 1 1 1 1 1 
- + - - -  (7.15) 2 

gF/2 gn 2 irE/2/g/3 m l  ml  m l m 3  

1 1 1 1 1 1 
+- - -  + - - -  ( 7 . 1 6 )  

m~ m3 m2m3 rrl~l ml mira2 

From (7.8b) and (7.10), we get 

47rp(3 - Ao /3 (7.17) 

Equations (7.14) and (7.17) give GIG. If we assume rn~-- 1 and G oc l/t, 
then from (7.13) and (7.14) the pressure and density vary as t/t. The model 
is singular at t = 0. 

Further 

[ ( 1 7 1  1 1 1 lm~ ) 
1 1 '?~/2 D12 /9/3 m3 mlmz m "+P=G-d 7 2 

+ 2aZ(m,D1 t) 2/,~,] (7.18a) 

1 [ ' 1 / 1  1 1 1 1 2 1 \ 
�9 2 + 2Ao P-P=-8~-G m2 m~ m3 m3 mlm2 m2rn3 rn3rnl ) 

+ 4a 2(m~ D~ t) -2/m~ J (7.18b) 

1(2 o  333 2 2 q 2 ~ (7.18c) 
p + 3p = 8qrGt2 m2 m2 m3 m3 m2m3 mlrn2 m3ml 

1 r l / 3  3 3 3 4 1 1 \ 

LTt  2 F 4Ao 
p - 3 p = ~ - - G  2 m ~  m 3 m 3 rn2rn  3 m l F a  2 m3m t ) 

+6a2(rnlDat) 2/rn ] (7.18d) 
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The reali ty condi t ions p - 0, p -> 0, and  p - 3p --- 0 impose  fur ther  restrict ions 
on the mode l  besides ml = 1, (7.15), and  (7.16). 

8. BIANCHI  TYPE VIo M O D E L  

The Bianchi type VIo metr ic  is 

dS 2 = dt 2 -  R~(t) dx 2 -  R2(t)e -2ax dy 2 -  g2( t )e  2~x dz 2 (8.1) 

where  a = const. 
The field equat ions  (2.1)-(2.2),  for  the metr ic  (8.1) reduce to 

t1~2 [_/1~3._~_11~21~ 3 a 2 
- -  +-X5 = 8 ~ r G p -  A (8.2) 

R2 R3 R2R3 R1 

1~1 ~_ i~3~_ /~1/~3 a 2 
Rl R3 ele3 R2 83Tap -- A (8,3) 

1~1 R2 /~ 111~2 a2 
t - - - +  +--25 = 8~rGp - A (8.4) 

Rl R: RIR2 R1 

/~11~2 ~_1~21~3_{. 1~311~1 a 2 
-87rGp - A  (8.5) 

RIR2 RzR3 R3RI R~ 

i~2 R3 0 (8.6) 
R2 R3 

8,7-i-pa-~8qTG[[J l/R1 R2 R3 ~ ] 
+ (p + p)~-~x+-~z+-~33) j + )~ = 0 (8.7) I_ 

I f  we suppose  that  the energy conservat ion  law holds for  matter ,  then 
(8.7) reduces  to 

/& & &\ 
f~ + (p + p)i-~l+-~2+-~33) =0 (8.8a) 

h -- - 8  ~-pd (8.8b) 

We define 

g(t) = (R1R2R3) 1/3 

We assume the solut ion of  equat ions  (8.2)-(8.8) in the form 

V ( t ) = ( m D t )  1/m 

el(t)=(mlDlt) 1/m, 
R2(t) = (m2D2 t) 1/m 2 

R3(t) = ( m3D3t ) 1/m3 

A ( t ) = A o  t-2, m, ml ,m2 ,  m3r  

(8.9) 

(8.1o) 
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where m, m~, m2, m3, D, D1, D2, D3, and Ao are arbitrary constants. From 
(8.6), (8.9), and (8.10), we get 

m 2 = m 3 (8.11) 

1 
(8.12~ 

m 3 \ m l  m2 m3/ 

Using (8.10) in (8.2) and (8.5), we get p and p, respectively, 

8~.Gp=~(Ao_ 1 1 1 1 13) 2 ~ +a2(mlDl t )  -2/ml (8.13) 
m 2 m e m~ m2m 3 

8 ~ ' G p = - ~ ( A o +  1 + 1 + 1 )+a2(maDlt )_2/% (8.14) 
n ' / t  FH 2 m2m 3 m3ml  

From (8.2)-(8.4) and (8.10), we have 

1 { 1  1_ 1 1 1 1 ) 
t2 \m~ ml mlm3 m~ rn2 m-2m3 

=2a2(m,D~t)  2/'1 (8.15) 

1 (1~ 1 + ~ 1  1 1 lrn3- ) 
t -5 ml mlrn2 m 2 ~ m 3 m 

=2a2(mlD,  t) 2/"1 (8.16) 

The equations are satisfied leading to relations between the constants 
when ml = 1. 

From (8.8b) and (8.10), we get 

Ao 4~-pG = ~3- (8.17) 

Equations (8.14) and (8.17) give (JIG. When rnl = 1, ~j/Goc 1/t. When we 
take Goc 1/t, the pressure and density vary as 1/t. The model is singular 
at t=O. 

Further 

8_~G [~2 ( 1 1 P + P m~ m2 m~ 

+ 2a2(mlDlt )  -2/% ] 

1 [ 1  1 1 1 
P - P = g r r G t 2  ~~q2 m2 m3 m~ 

1 1 1 
m3 mlm2 2~ 

1 2 1 
4 

m l m 2  m 2 m 3  m3ml  

(8.18a) 

-2Ao) (8.18b) 

902/32/6-12 
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,[1(33 
p + 3 P = 8 ~ G  ~ m 2 m2 

+ 4aZ(mlD1 t)-2/m~ 

p - 3 p  =~-~--~ m2 rn2 

- 2a2(mlD1 t)-2/ml] 
J 

3 3 2 1 1 

m~ m 3 m2m3 m3m 1 mlm 2 

Singh and Agrawal 

- -  4- 2Ao) 

(8.18c) 

(8.1Sd) 

3 3 1 4 1 \ 
2 ~ 4Ao ) m3 m3 mlm2 m3m2 m3m~ 

The reality conditions p > 0, p->-0, and p - 3 p  >--0 put restrictions on 
the model. 

9. B I A N C H I  T Y P E  V I I I  M O D E L  

The Bianchi type VIII metric is 

dS 2 = dt 2 _ S 2 dx 2 - R 2 d y  2 - (R 2 sinh 2 y + S 2 cosh 2 y) dz 2 

- 2S 2 cosh y dx dz (9.1) 

where S = S(t) ,  R = R(t ) .  
The field equations (2.1)-(2.2) for the metric (9.1) reduce to 

2/~+(--~R] 2 1 = - =  Go 3 $2 
R \ R / - R ~ - 4 R  ~ = 8 7 r - - A  (9.2) 

~ RS 1 S 2 
- - + - - +  + -  = 8 r  (9.3) 
R S RS 4 -Y  s 

Rs+( 1 i s  2 
2~--~ \ ~ - /  RZ 4 R  4 8 7 r p G - A  (9.4) 

8r + (p + p ) ( ~ + 2 - ~ )  ] + h = O  (9.5) 

If we assume that the energy conservation law holds for matter, then 
(9.5) reduces to 

[ \ S  2/~ 
t ~ + ( p + p ) ~ - ~ + - ~ )  =0  (9.6a) 

A = -87rGp (9.6b) 

We define 

V(t)  = (SR2) 1/z (9.7) 
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We assume the solution of equations (9.2)-(9.6) in the form 

V( t )  = ( m D t )  l/m 

S( t) = (rniDl t)1/ml 

R ( t )  = (m2D2t) 1/% 

A(t) =Ao t-2, m, m l ,  m 2 r  

(9.8) 

where m, rnl, m2, D, D1, D2, and Ao are constants. 
From (9.7) and (9.8), we get 

3 m l m  2 
m - - -  

2ml + rn2 

Using (9.8) in (9.2) and (9.4), we get p and p, respectively, 

8 o r G p = - j  Ao-~ 
m2 

3 (m~Dlt) 2/% 

4 (m2D2t) 4/m2 

1 
8 ~ G p  = - w 

l -  
Ao+ 7 t 

m l m  2 (m2D2t) 2/% 

1 (rn ,D, t )  2/ml 
+ 

4 (m2D2t) 4/m2 

(9.9) 

(9.10) 

(9.11) 

From (9.2), (9.3), and (9.8), we have 

1) 
t 2 2 rn2 rnl rnl rnl-rn2 

= (m2D2t) -2 /%+ ( m l D l t )  2/ml 
(m2D2t)4/'~2 

(9.12) 

This is satisfied and reduces to a relation between the constants when 

m l = m 2 = l  

From (9.6b) and (9.8), we have 

(9.13) 

4rrpG - Ao 
f3 (9.14) 
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Equations (9.11) and (9.14) give (3/G. I f  we take Gec 1/t and assume that 
(9.13) holds, then the pressure and density vary as 1/t. The model is singular 
at t = 0 .  

Further 

P + P = ~ G - ~  ~n22 m2 m 

1 (mlDlt)2/m~ 7 
4 (m2D2t)'/'~-'-'--------------~-J (9.15a) 

1 [ ~ (  1 2 1 )  
P - P = 4 - ~  - Ao+ + 2 mlm2 m2 

+(m2D2t)_2/m2 + 1 (mlDlt) 2/m~] 
2 (m2D------zt) 4/'~-------~2] (9.15b) 

1 [ 1 (  1 4 3 )  
p + 3 P = 4 - -  ~ ~5 Ao - - ~  Y,2 

_(m2D2t)-2/% (mlDlt) 2/''] 
(m2D2t)a/m----------------~ j (9.15c) 

2 2Ao p - 3 p = ~ G  -~ re,m2 m2 

(mlDlt)2/m~l (9.15d) 
+ 2(m2Dzt)-2/m2+~ (m2D2t)4/m2j 

The reality conditions p -> 0, p -> 0, and p - 3p -- 0 impose further restrictions 
on the model. 

10. BIANCHI TYPE IX MODEL 
The Bianchi type IX metric is 

dS 2 = dt 2 _ S 2 dx 2 _ R 2 dy 2-  (R 2 sin 2 y + S 2 cos 2 y) dz 2 

+ 2S 2 COS y dx dz 

where 

S=S(t ) ,  R = R ( t )  

The field equations (2.1)-(2.2) for the metric (10.1) reduce to 

1 3 S 2 

2 R  \ R /  4 

(10.1) 

(lO.2) 
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/~ S /~S 1 S e ~+~+~+~ ~= 8~Gp-A 

/~S (~_) 2 1 1 $2 
2-R-~+ ~- R e 4 R 4 = - 8 7 r G p - A  

8~Od+87rG[p+(P+P)(-~+ 2-R) ] + ]k=O 

If we assume that the energy conservation law holds for 
(10.5) reduces to 

We define 

X = -8~-dp  

v ( t )  = (SRe)  '/3 

We assume the solution of equations (10.2)-(10.6) in the form 

V(t) = (mDt) '/m 

S(t)=(mlD, t) '/'q 

R(t) = (mzDfl)~/'~2 

A(t) = Ao t-z, m, ml, mer  

where m, rn~, me, D, D1, De, and Ao are arbitrary constants. 
From (10.7) and (10.8), we have 

3mime 
m 

2m~ + me 

Using (10.8) in (10.2) and (10.4), we get p and p, respectively, 

8 ~ G p = ~ ( A o  -+ 32 2)+(meDet)-a/m2 
m2 2 

3 (mlDlt) e/~ 
4 (meD2t) 4/m2 

8~rGp=--~ Ao+ -(rneDfl) -2/m2 
mlm2 

1 (rnlDlt) 2/~, 
4 (m2Dfl) 4/m2 

(10.3) 

(10.4) 

(10.5) 

matter, 

(10.6a) 

(10.6b) 

(10.7) 

(lO.8) 

(10.9) 

(lO.lO) 

(lO.11) 
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From (10.2), (10.3), and (10.8), we get 

_ _  . 2 ~ -  12 n-12 m l mira2 m2 

= (m2D2t)-2/m2 (miDlt) 2/ml 
(m2D2l) 4/m2 

(10.12) 

This'is satisfied and leads to a relation between the constants when 

m~ = m2 = 1 (10.13) 

From (10.6b) and (10.8), we get 

4zrpG Ao = t- Y (10.14) 

From (10.11) and (10.14) we can obtain G/G. If  we assume that Goz 1/t 
and also that (10.13) holds, then from (10.10) and (10.11) the pressure and 
density vary as lit. The model is singular at t = 0. 

Also 

P + P = ~ G  2 2 m2 

1 (mlDlt) 2/~s 

P - P  = 4 - ~  Ao+ 
1 + z z  ) 

mlm2 mR m2] 

(10.15a) 

p + 3 P = 4 ~ -  ~ Ao m~m2 m2 

+(m2D2t)-2/m2 (mIDlt)2/m' 1 
(rn2D2t)4/,~---------------~ j (10.15c) 

1 [~(m3_2 1 5 ) 2 2Ao p -3p  = ~ G  mira2 m2 

_ 2(m2D2t)-2/m2q_~ ( mlDlt)2/~l ] 
(m2D2t)4/m2j (10.15d) 

The reality conditions p >- 0, p -> 0, and p - 3 p  -> 0 impose further restrictions 
on the model. 

1 ( m , D l ~ ]  (10.15b) 
-(m2D2t)-e/m2~ 2 (m2D2t)4/"2J 
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11. C O N C L U S I O N S  

We have invest igated Bianchi- type models  in which the cosmological  

and  gravi ta t ional  constants  vary with time. The Hubb le  parameter  is assumed 
to follow a power- law var ia t ion  with t ime and  A oct -2. All the models  start 
from a s ingular  state at the epoch t = 0, The gravi tat ional  constant  G can 
be a decreasing or increas ing func t ion  of time. For G o c  1/ t ,  the pressure 

and  densi ty  show a simple behavior  and  decrease with time. The cosmologi-  
cal cons tan t  A is gradual ly  reduced as the universe expands.  
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